HOW TO CHOOSE RIGID POLYMERS | | PA12 | PA11 | | PP | | | |---------------|---|--|--|---|--|--| | | Robust and strong Low cost per part Good balance between mechanical properties (Tensile Strength, Modulus and Elongation) | Ductile parts Higher EaB & impact than other PA12/PA12GB Raw material from vegetable castor oil (reduced environmental impact) | High stiffness
Dimensional stability
Higher HDT | Chemical resistance
Tightness
Welding capabilities
Lowest cost material
100% reusable | | | | APPLICATIONS | Applications
Complex assemblies, housings
enclosures
and much more | Protheses, insoles, sports goods,
snap fits, living hinges | Enclosures and housings, fixtures and tooling | Enclosures and housings,
fixtures and tooling | | | | COMPATIBILITY | HP Jet Fusion 4200 & 5200 3D
Printing Solution | HP Jet Fusion 4200 & 5200 3D
Printing Solution | HP Jet Fusion 4200 & 5200 3D
Printing Solution | HP Jet Fusion 5200 3D Printing
Solution | | | Copyright 2020 HP Development Company, L.P. The information contained herein is subject to change without notice. ## Mechanical Properties | | | HP 3D HR PA12 | | HP 3D HR PA11 | | HP 3D HR PA12GB | | HP 3D HR PP enabled by
BASE | | | | |----------------------------------|-------------------------------|-----------------------------|------|-----------------------------|------|-----------------------------|------|--------------------------------|------|-----------------------------|--------------------| | | | XY | Z | | MECHANICA
L
PROPERTIE
S | TENSILE
STRENGTH / MPA | 50 | 50 | 54 | 54 | 31 | 30 | 30 | 30 | 49/36-
44 | 49/34-45 | | | TENSILE
MODULUS/ MPA | 1900 | 1900 | 1700 | 1800 | 2900 | 3000 | 1600 | 1600 | 1800/
1300-
1600 | 1900/14
00-1700 | | | ELONGATION AT
YELD / % | 10 | 8 | 25 | 20 | 8 | 4 | 10 | 10 | 11/10-12 | 9/5-10 | | | ELONGATION AT
BREAK / % | 17 | 9 | 40 | 25 | 9 | 5 | 20 | 18 | 17/10-17 | 9/5-12 | | | IMPACT
STRENGTH /
KJ/M2 | 4.2 | 3.8 | 7 | 4.5 | 3 | 3 | 3.5 | 3 | 3.2/3.6-
3.9 | 2.7/2.5-
3.0 | | | DENSITY | 1.01 | | 1.05 | | 1.3 | | 0.89 | | 1.01 | | | WORKFLOW | | COLD UNPACK
FULL BUCKETS | | Copyright 2020 HP Development Company, L.P. The information contained herein is subject to change without notice.